
Algebraic Behavior of Idempotent Elements in Near Ring

Ambreen Zehra1, Sarwar Jahan Abbasi2, Nazrah Zahid Shaikh3

1Department of Computer System Engineering, Faculty of Engineering, Science and Technology, Hamdard University Main Campus,
Karachi, Pakistan
2Department of Mathematics, University of Karachi, Karachi, Pakistan
3Department of English, Faculty of Social Sciences and Humanities, Hamdard University Main Campus, Karachi, Pakistan

Email: ambreen.zehra@hamdard.edu.pk, sawarjabbasi@yahoo.com, nazra.zahid@hamdard.edu.pk

Abstract

The study of Boolean near-rings and idempotent elements forms an important part of modern algebra, particularly in
exploring the structural behavior of near-rings and their algebraic properties. In this work, we investigate the nature of
idempotent elements in near-rings with special emphasis on near-fields and Boolean near-rings. We show that:

1.Near fields have exactly two idempotent elements. We claim that they are the trivial idempotent elements. Further, we
give concrete example to support this claim that if R is not a near field, the idempotent elements are not exactly two.
2.Idempotent element is a near integral domain also trivial.
3.Every Boolean near ring is commutative near ring.

Overall, our findings provide a deeper understanding of the interplay between idempotent elements, near-fields, near
integral domains, and Boolean near-rings. The results not only contribute to the theoretical advancement of near-ring
theory but also establish useful connections with commutativity, algebraic simplicity, and structural classification. This
study opens pathways for further exploration of near-rings in relation to other algebraic systems and their applications
in both pure and applied mathematics.

Moreover, future research can extend these results to hybrid algebraic systems, examine categorical frameworks that
unify near-rings with related algebraic structures, and explore their interdisciplinary use in computer science, data
encryption, and logical reasoning models, thereby strengthening both the theoretical and applied dimensions of near-
ring theory.
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1. History of Near Ring

In late 1968, approx. fifty-five years ago, the first conference on near rings and near fields took place in the
Mathematics Forschung Institute Oberwolfach- Germany. In this conference, mainly present historical survey on “The
beginning and development of near-ring theory”.

The theory of near-rings emerged as a response to the need for algebraic structures that model real-world systems more
flexibly than traditional rings. The concept has its roots in the evolution of abstract algebra during the late 19th and
early 20th centuries. Mathematicians sought structures that would extend or generalize classical ring theory, particularly
in contexts where certain axioms (like the commutativity of addition or the left distributive law) were too restrictive or
simply not satisfied. The formal definition of a ring, as an algebraic structure equipped with two binary operations
(addition and multiplication), was influenced heavily by the work of Dedekind, Noether, Hilbert, and others in the late
1800s and early 1900s. Rings provided a unified framework for solving problems in number theory, linear algebra, and
algebraic geometry. As algebra developed, it became increasingly clear that many natural structures encountered in
mathematics and related disciplines exhibited almost ring-like behavior but did not fully satisfy all ring axioms. For
instance, function spaces, endomorphism sets, and certain transformation sets displayed non-commutative addition or
lacked one of the distributive laws.

Near-rings are one of the generalized structures of rings. The term 'near-ring' was first introduced in a more structured
way in the mid-20th century, particularly in the 1940s and 1950s, when mathematicians like Günther Pilz, B.H.
Neumann, H. Neumann, and others began to formalize systems that partially satisfied ring axioms. Their work focused
primarily on relaxing the left distributive law and removing the requirement of commutative addition, thereby forming a
new class of algebraic structures that could accommodate a wider variety of mathematical objects. The research and
study on near rings is very systematic and continuous. The foundational groundwork for near-rings was laid by the
study of rings, groups, and semigroups.
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B.H. Neumann and H. Neumann were among the first to explore algebraic systems that arose naturally in group theory
and transformation semigroups, which lacked symmetry in distribution or addition. Their work highlighted that these
algebraic structures, though not rings, still exhibited enough internal consistency to be studied as a distinct class.

Their introduction of the gamma near-ring was a pivotal moment in the evolution of the theory. In a gamma near-ring,
the binary operations were defined in a context involving an external set of operations (often denoted as Γ), which acted
on the elements in a non-traditional manner. This provided an elegant generalization of near-rings and created a rich
field of study that combined group theory, semigroup theory, and transformation theory.

Günther Pilz, Austrian mathematician made significant contributions to the development and classification of near-rings.
His work during the 1960s and 1970s was instrumental in formalizing the theory and exploring its applications in
endomorphism rings, modules, and automata theory. Pilz also authored one of the foundational books in the area, Near-
Rings: The Theory and Its Applications, which provided a systematic treatment of near-ring theory, encompassing its
axioms, examples, homomorphisms, ideals, and applications. His work not only unified the fragmented research of
earlier decades but also inspired a new generation of mathematicians to study near-rings as a legitimate and fruitful
algebraic field.

Motivation Behind the Concept for developing near-ring theory stemmed from the realization that many algebraic
systems particularly those arising in applied contexts-did not conform to the strict requirements of rings. Specific
motivations included: modeling non-linear operations, transformation functions, non-commutative settings, and
incomplete distributivity.

In the period of 1960s–1980s, , near-ring theory began to flourish. Several developments occurred during this period:
generalizations, module theory, radical theory, categorical approaches, and combinatorics and geometry. In 1990s till
Present, near rings are being used since the development of Calculus, but the basics and key ideas to formalized in 1905
by Dickson’s who defined the near field to give examples of Non- desarguesian planes. In 1930, Wieland studied near
rings, which were not near fields. Further text material about subject can be found from two famous books on the near-
rings [1,2]. The scope of near-ring theory has continued to expand in both theoretical and applied directions. Fuzzy
near-rings, near-ring-based cryptography, topological near-rings, computational tools, and interdisciplinary applications
are now common in the field.

In last, the abstraction of rings and groups to its present-day applications in computational science and discrete
mathematics, near-ring theory has evolved significantly over the past century. Key figures like the Neumanns and
Günther Pilz played a foundational role in defining and developing near-ring theory, while modern mathematicians
have expanded its boundaries into new domains. The historical development of near-rings showcases not just a logical
progression of algebraic thought but also an enduring effort to make mathematics applicable to a broader range of
problems and systems.

In algebra, the concept of idempotent elements has been extensively studied due to their central role in understanding
the internal structure and functional decomposition of algebraic systems. An element e of a near ring N is called
idempotent if 2e e . This definition resembles that found in rings and semigroups, but in nearrings, the properties and
implications of idempotent elements are notably more intricate due to the relaxed distributive laws. Specifically, near
rings typically satisfy only right distributivity, i.e.,  a b c ac bc   , and not necessarily left distributivity. This
distinction makes the identification and analysis of idempotent elements in nearrings both challenging and intellectually
stimulating.

Idempotent elements serve as a powerful tool in the structural analysis of algebraic systems. In near rings, they often
define specific substructures or subnear rings that exhibit simplified or well-understood behaviors. For instance, if a
near ring contains a large number of idempotent elements, these may partition the near ring into disjoint components or
help characterize ideals and congruence relations. Moreover, the set of idempotent elements can sometimes be used to
construct projection maps or define endomorphisms with desirable properties, such as being homomorphic images or
retrievable by idempotent actions. This property is particularly useful in the study of transformation near rings, where
functions operate on sets and the composition structure benefits from the presence of idempotent transformations.

A key focus in near ring theory is to classify and characterize all idempotent elements within given classes of near rings.
Various methods have been developed to identify idempotent, including solving algebraic equations of the form 2x x
under near ring operations, studying fixed points of self-maps, or using matrix representations where applicable. The
presence of idempotent elements also has implications for the decomposition of modules over near rings. In analogy to
ring theory, where idempotent lead to direct sum decompositions of modules, a similar-though generally more
restricted-phenomenon may be observed in near ring-modules. In fact, certain near rings admit a structure where the
presence of orthogonal idempotent enables a type of partial decomposition that mimics behavior found in semi-simple
structures.

Idempotent elements are also instrumental in understanding the lattice of ideals and sub near rings. For example, in
zero-symmetric near rings (where 0. 0a  for all Na ), idempotent often generate minimal right ideals, thereby
providing insight into the layering of the ideal structure. In practical applications, especially in automata theory and
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formal language processing, idempotent transformations help define stable states or repeated configurations. These
features make idempotent elements a key topic not only in theoretical algebra but also in applied mathematical contexts.

Further research in this area continues to explore the role of idempotent in non-traditional or generalized near rings,
including fuzzy near rings, interval near rings, and near rings over groups with additional structures. The broad
applicability and the structural insights offered by idempotent elements confirm their importance in advancing both the
foundational theory and the practical uses of near ring algebra.

Secondly we discuss commutative near ring. Near rings generalize rings by relaxing one or more ring axioms, and
among these generalizations, the concept of a commutative near ring presents an interesting hybrid structure. A near
ring N is said to be commutative if the multiplication operation satisfies  for all , Na b b a a b    . Unlike in ring
theory, however, a commutative near ring does not necessarily possess two-sided distributivity; typically, only the right
distributive law holds. This subtle distinction allows for a broader class of algebraic systems while still retaining enough
structure to enable deep mathematical analysis.

The study of commutative near rings is motivated by the desire to understand how the relaxation of distributivity affects
the classical results from commutative algebra. In a commutative ring, many theorems rely on the interplay between
commutativity and full distributivity, but in a commutative near ring, these theorems may not hold in full generality or
may require additional conditions. For example, the existence and uniqueness of factorization into irreducible elements-
a cornerstone of ring theory-is generally more complicated in near rings. Likewise, the structure of ideals, maximal and
prime elements, and modules over a commutative near ring may differ significantly from their ring-theoretic
counterparts.

One of the key aspects of commutative near rings is their potential to model algebraic behavior in systems where
symmetry in multiplication is desired, but full distributivity is not guaranteed. This is particularly relevant in certain
areas of computer science, coding theory, and cryptography, where operations may be inherently asymmetric in terms
of addition and multiplication. By studying commutative near rings, researchers can explore systems that strike a
balance between complexity and tractability. These structures also lend themselves to analysis via polynomial functions,
transformation semigroups, and matrix operations under constrained conditions.

Another important area of interest is the homomorphic images and substructures of commutative near rings. Given a
commutative near ring, one can study its endomorphism near ring, which often retains commutativity under
composition or application. Moreover, questions regarding the existence of multiplicative identities, zero divisors, and
unit elements in commutative near rings add layers of richness to their classification. Some commutative near rings
have been constructed explicitly from modules over commutative rings, while others emerge as functional near rings
acting on vector spaces, semigroups, or even sets with additional algebraic constraints.

The classification and construction of commutative near rings remain an active area of research. For example, one can
define commutative near rings by restricting the operations in well-known ring structures or by constructing quotient
structures over more complex algebraic systems. In this sense, commutative near rings serve as both a theoretical
generalization of rings and a practical modeling tool for systems with limited distributive properties but symmetric
multiplicative interactions. Their intermediate position between general near rings and full rings provides valuable
insight into algebraic hierarchies and their implications for both pure and applied mathematics.

Boolean near rings form a specialized and highly structured class of near rings in which every element is idempotent,
that is, for each element Na , we have 2a a , and the additive structure of the near ring is typically that of a
Boolean group i.e., an abelian group where every element is its own inverse. This means 0 for all Na a a   , which
implies that every element has order 2 under addition. Such near rings are deeply connected to logic, switching theory,
and the algebraic foundations of digital circuits.

The motivation for studying Boolean near rings stems from their close alignment with the structure of Boolean algebras
and logical systems. In fact, Boolean near rings can be seen as a non-classical algebraic framework that captures binary-
state behaviors, such as on-off switching or true-false logic. These structures are particularly useful in modeling finite-
state machines, decision trees, and control systems. Because every element is idempotent under multiplication, Boolean
near rings exhibit a high degree of predictability and stability, which makes them especially suitable for modeling
repetitive or stabilized systems.

One of the most intriguing aspects of Boolean near rings is their simplicity combined with expressive power. Despite
having only two possible values for each element under addition and a constrained multiplication operation, these near
rings can be used to represent complex logical expressions and operations. For instance, in digital logic design, Boolean
near rings can be used to describe networks of logic gates, where each gate corresponds to a specific idempotent
operation. This algebraic representation helps in simplifying and optimizing logical expressions, particularly in the
design and analysis of integrated circuits.

The structural analysis of Boolean near rings also offers insights into decomposition theories and automorphism groups.
Since every element is idempotent, Boolean near rings tend to have flat or degenerate ideal structures, which
nonetheless can be useful in classification problems. The simplicity of their operation allows for complete enumeration
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of elements and exhaustive study of substructures. Furthermore, Boolean near rings can be realized as function near
rings on finite sets, where the multiplication is defined via function composition and the addition corresponds to
pointwise XOR operations. This realization links Boolean near rings directly to computer science, especially in areas
related to parallel processing, fault-tolerant systems, and artificial intelligence models that rely on binary-state logic.

Mathematically, Boolean near rings are often studied in relation to Boolean rings and lattices. While Boolean rings also
have the property that every element is idempotent under multiplication, the difference lies in the extent of distributivity
and the algebraic context. Boolean near rings allow researchers to explore what happens when the distributive law is
partially or selectively applied, opening up new theoretical questions and applications. This makes Boolean near rings a
flexible yet powerful algebraic structure that extends the reach of classical Boolean logic into broader mathematical and
computational domains.

In conclusion, Boolean near rings are not just a mathematical curiosity but a robust framework for modeling logical
systems, analyzing algebraic structures with constrained operations, and bridging the gap between abstract algebra and
digital applications. Their utility in representing and simplifying binary operations makes them an essential tool in both
theoretical research and practical implementations in modern technology.

2. IntroductoryMaterial

We call an empty set R a right near ring if (R, +) is group, not necessarily abelian, (R,.) is a semi group and
multiplication is right distributive over addition. The following concepts are as in defined in the ring theory: (right)
identities, (right) cancelable elements and (right) zero divisors. If (R, .) is commutative then we call R is a commutative
near ring. If all non-zero elements R are right cancelable then R fulfills the right cancelation law.

A near ring without zero divisors is called near integral domain. If (R*(=R\{0}),.) is also a group then R is called a near
field.

If R is a Boolean near ring, then 2x x .

All introductory material on near rings can be found in the writing [1,2].

3. Scope and Applications of Near-Ring

Over the decades, the theory of near-rings has evolved from a purely abstract endeavor into a domain with numerous
applications across mathematics and theoretical computer science. The following sections outline key areas where near-
rings play a pivotal role:

3.1 Algebraic Structures and Generalizations

Near-rings serve as generalized algebraic structures bridging gaps between rings, semigroups, and groups. They are
especially useful in the classification and study of non-associative or partially distributive systems. In particular, gamma
near-rings, generalized near-rings, and near-fields (which relax field axioms) form an active area of study in algebra.

3.2 Combinatorics and Group Actions

Near-rings have applications in combinatorial design theory, especially in the construction of block designs and
difference sets. Near-rings act on groups, allowing the formulation of group actions that are not necessarily linear, thus
broadening the analytical framework of permutation groups and symmetry.

3.3 Automata and Formal Language Theory

In automata theory, near-rings model the behavior of state transition functions. The non-commutative addition and
relaxed distributivity naturally fit the behavior of deterministic and non-deterministic automata, where inputs result in
transitions governed by state and context rather than linear transformations.

3.4 Coding and Cryptography

Near-rings are used in the construction of non-linear codes and error-correcting systems. Their non-commutative nature
makes them suitable for modeling non-linear encryption schemes where ring structures are too restrictive. Near rings
can also produce rich algebraic invariants that support authentication and message integrity. Near ring also give the new
horizon to modern algebra or abstract algebra.

3.5 Topological and Geometrical Structures

Topological near rings extend near-ring concepts into topology. They are used in the study of topological groups,
module structures, and topological vector spaces. In geometry, near-rings model geometrical transformations and
support research into finite geometries and affine planes.

3.6 Computer Science and Logic

The logic of computer programs, particularly involving non-deterministic computation, finds near-ring algebra useful.
Programs modeled as transformations on state spaces under function composition naturally form near-ring structures.
Also, semantics of programming languages especially those involving side effect are represented using near ring-like
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structures.

4. Research Frontiers and Current Trends

The field of near-ring theory is expanding with research addressing both theoretical and applied problems. The current
trends include:

Fuzzy Near-Rings: Combining fuzzy set theory with near-ring algebra to manage uncertainty in algebraic computations
and AI systems.

Intuitionistic and Rough Near-Rings: Integrating logic-based uncertainty frameworks into algebra, useful in decision
sciences.

Categorical Approaches: Applying category theory to near-rings to better understand homomorphisms, modules, and
factorial properties.

Near-Ring Modules: Investigating near-ring modules, which generalize ring modules, enabling algebraic modeling of
more complex operations.

Homological Algebra: Some researchers are exploring homological aspects of near-rings, such as extensions,
derivations, and cohomology theories.

Near-Ring Radicals: The study of radical theory in near-rings, such as Jacobson radicals and prime radical properties,
mirrors developments in ring theory.

5. Educational Value

In educational contexts, near-rings serve as excellent tools for:

Developing abstract reasoning,

Exploring the boundaries of algebraic systems,

Constructing counterexamples in ring theory,

Bridging group and semigroup theory.

6. Comparative View: Near-Rings Vs Rings

Ring [3,4] Near-Ring[1,2] Property[5,6]
Abelian Not necessarily abelian Additive Group

Both left and right Usually only right distributive Distributive Laws
Associative with identity Associative, identity optional Multiplicative Structure
Broad, especially linear Broader in non-linear systems Applications

Required Not Required Commutativity (Addition)

7. Near Rings Results

In this section we present three facts related to idempotent elements in near field, near integral domain and Boolean near
ring.

7.1 Theorem

Near field have exactly two idempotent elements. Proof:

As we know that
20 0 , we only need to prove the result for non-zero elements. Let Ra , such that 0a  . If a is an idempotent

element then,

   

 

2

2

20
0 1

a a

a a a a

a a
a a



     

  

  

Either 0 or 1 0a a  

Since a is non zero therefore 1a  .

Next we give example to show that they are the only elements in R as elements other than 0 and 1 are not idempotent
element in near field [7,8].
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Example-1:

( 3Z , +, .) Under addition modulo 3 and multiplication modulo 3 is near field [9].

 0 1 2

0 0 0 0

1 0 1 2

2 0 2 1

0 and 1 are the only idempotent elements as 02=0, 12=1 and 22≠2.

Question arises how many idempotent elements are in R if R is not near field.

Example-2:

( 4Z , +, .) is not near field [10].

 0 1 2 3

0 0 0 0 0

1 0 1 2 3

2 0 2 1 1

3 0 2 0 2

We note that 02=0 and 12=1 and 22=2 which shows that 0, 1, 2 are idempotent elements. Hence if R is not a near field
then idempotent elements are not just the trivial elements.

7.2 Theorem

The idempotent elements are a near integral domain trivial. Proof:

Suppose R is a near integral domain.  Rx and x is an idempotent element. Then 2x x

So, 2 0x x 

 1 0x x  

Since R is an integral domain, 0 or 1x x  .

Hence it is proved an integral domain have trivial idempotent elements.

7.3 Theorem

Every Boolean near ring is commutative near ring.

Proof:

Suppose R is Boolean near ring then first we have to prove

i) 0,    Rx x x   

ii)x=y 0   then   x y x y  

For first part Let

Rx

Rx x  , since ( R , +) is group.

 2x x x x    , since R is Boolean near ring

   x x x x x x    

2 2 2 2x x x x x x     
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x x x x x x      , by left cancellation law

0,    Rx x x    

For Second Let 0x y 

then x y x x   by part (i)

y x by left cancellation law

Now, we proof R is commutative near ring. Let R is Boolean near ring.

, R then Rx y x y   , Since ( R , +) is group

   2x y x y   

     x y x y x y    

  2 2x y x xy yx y     

 x y x xy yx y      as 2 2 or x x y y 

0xy yx   by cancelation laws

xy yx  by above x y

Hence, Every Boolean near ring is commutative near ring.

The bibliography of near rings is available on the website [11].

8. Conclusion

The theory of near-rings originated as a natural generalization of ring theory, relaxing certain axioms to accommodate
algebraic systems arising in real-world phenomena, particularly in transformations, automata, and non-linear structures.
Since its formal inception in the mid-20th century, the field has grown substantially, both in theoretical richness and in
practical applications. Near-rings bridge the gap between abstract algebra and applied domains such as coding theory,
computer science, logic, and combinatorics. Their flexible structure allows researchers to construct and study systems
that resist classical algebraic formalism. As mathematical research moves toward interdisciplinary and application-
driven exploration, the importance and scope of near-rings are only expected to grow.

In last, whether in modeling non-linear systems, designing cryptographic protocols, or understanding the internal logic
of computational processes, near-rings offer a versatile and profound algebraic framework. Continued research in this
domain promises not only to enrich algebra but also to impact various branches of science and technology.
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