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Abstract

The propagation of plasma beams, especially those from stellar explosions, plays a crucial role in shaping the dynamics
of interstellar media, cosmic ray acceleration, and galaxy evolution. This study presents a comprehensive mathematical
model describing the evolution of these plasma beams in galactic environments, incorporating deterministic forces from
gravity and electromagnetism alongside random interactions with turbulent interstellar media. We derive a generalized
Fokker-Planck equation that describes the distribution of particles in phase space, extending the classical Liouville
equation to account for diffusion processes in momentum space. The equation includes the effects of weak-field
gravitational forces, electric fields, magnetic fields, as well as random perturbations arising from plasma turbulence and
magnetic fluctuations. We rigorously analyze the mathematical properties of the equation, proving the existence,
uniqueness, and stability of weak solutions. Additionally, we derive key conservation laws describing the particle
number, momentum, and energy, and investigate the conditions under which these quantities are conserved or dissipated.
In equilibrium states, the particle distribution is shown to converge to a form analogous to the Maxwell-Boltzmann
distribution, emphasizing the connection between plasma dynamics and classical statistical mechanics. Our study
provides a unified framework for understanding plasma transport in astrophysical environments, offering profound
insights into phenomena such as cosmic ray propagation and the evolution of supernova remnants. This research lays an
important foundation for future studies on the interactions between particles, electromagnetic fields, and turbulent
media in astrophysical settings.
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1. Introduction

The propagation of plasma beams ejected from stellar explosions through galactic environments represents a
fundamental process in astrophysics, influencing the dynamics of interstellar medium, cosmic ray acceleration, and
galaxy evolution. In such scenarios, the plasma beam, composed of relativistic charged particles, interacts with the
weak-field general relativistic effects near the stellar source, electromagnetic fields pervasive in the galaxy, and a
myriad of stochastic perturbations arising from turbulent interstellar media, magnetic fluctuations, and gravitational
microlensing. To model this complex propagation, we adopt a statistical approach by deriving a partial differential
equation (PDE) that incorporates deterministic forces from gravity and electromagnetism alongside diffusive terms
representing random disturbances. The foundational framework is the Fokker-Planck equation, which extends the
collisionless Liouville equation to account for stochastic interactions in phase space. This equation has been extensively
utilized in plasma physics and astrophysics to describe particle transport under combined deterministic and random
influences. For instance, early works on cosmic ray diffusion in galactic magnetic fields laid the groundwork for such
models [1,2]. Subsequent studies incorporated relativistic effects in plasma dynamics [3,4], while general relativistic
corrections in weak-field approximations have been explored in contexts like neutron star atmospheres [5,6]. In galactic
scales, the plasma beam’s spread is affected by stochastic scattering from interstellar turbulence [7,8], leading to
diffusive behavior in momentum space. Electromagnetic fields, including large-scale galactic magnetic fields, induce
Lorentz forces that alter particle trajectories [9,10]. Gravitational effects, though weak, become pertinent near the stellar
explosion site [11,12]. The inclusion of source terms accounts for particle injection from the stellar burst [13,14].
Mathematical analyses of the Fokker-Planck equation in these settings have focused on existence and uniqueness of
solutions [15,16], stability properties [17,18], and conservation laws [19,20]. Non-negativity of the distribution function
ensures physical consistency [21,22]. Equilibrium distributions often relate to Maxwell-Boltzmann forms under thermal
balance conditions [23,24], though relativistic and magnetic effects impose stringent constraints [25,26]. Recent
advancements have applied these models to specific astrophysical phenomena, such as gamma-ray burst afterglows
[27,28] and supernova remnant shocks [29,30]. By integrating these elements, our analysis provides a unified PDE
description of the plasma beam’s evolution, elucidating its mathematical properties and physical implications.
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2. Model Formulation and Equation Derivation

2.1 Phase Space Distribution Function

In statistical physics, to describe the microscopic behavior of a macroscopic particle system, we introduce the phase
space distribution function f° (X,p,l‘ ) [31,32]. This function is a probability density, representing the number density

of particles near position X and momentum P at time / per unit phase space volume. For systems with numerous

particles, tracking individual deterministic trajectories is infeasible. Thus, the distribution function offers a statistical
description, enabling the study of macroscopic properties and evolutionary laws[7]. The phase space is typically six-

. . .. . . . . 1.2 .3 . .
dimensional, comprising three-dimensional position coordinates X = (x , X, X ) and three-dimensional momentum

coordinates P = (pl, pz, p3 )

2.2 From Liouville Equation to Fokker-Planck Equation

Particles in classical mechanics follow Hamilton’s equations. For a collisionless particle system under deterministic
external fields, the evolution of the phase space distribution function f is governed by the Liouville equation. This

equation is essentially the continuity equation for particle number density in phase space, asserting that the phase
space fluid” is incompressible, with phase space volume elements remaining constant during motion (Liouville’s
theorem)[17].

The total derivative form of the Liouville equation is:
£=%+d_x.%+d_p.z= 0 1
dt o dt ox dt Op

X
where — =V is the particle velocity, and ?p =F is the force on the particle.
t t

For a single relativistic particle, the velocity v relates to momentum P as vV = P , where y =/1+ (|p| / mc)2 is
ym

the Lorentz factor, m 1is the rest mass, and ¢ is the speed of light [4,25].

The force F can include various physical sources. In a general relativistic background, we consider the following main
forces:
1.General relativistic gravity K, : This arises from background spacetime curvature [5,33], reducing to Newtonian

gravity in the weak-field limit.

2.Electric field force gE : Force on charged particle ¢ in electric field E .

3.Lorentz magnetic field force ¢ (V X B) : Force on charged particle ¢ in magnetic field B, with v the particle
velocity[5].

Substituting these forces component-wise into the Liouville equation and expanding the summation notation yields the
classical Liouville equation in detail:

i J
g+La_f_+ FéR+qu+q€i/kp—Bk i:O(z)
ot ym oOx' ym op'

However, real particle systems are not ideal collisionless systems. Microscopic interactions between particles or with
background media (such as plasma or electromagnetic waves) introduce randomness. These random interactions cause
stochastic changes in particle momentum (diffusion) and average energy loss (friction). The Fokker-Planck equation
introduces a collision term on the right-hand side of the Liouville equation to statistically describe the impact of these
random processes on the distribution function’s evolution [15].

The classical collision term in the Fokker-Planck equation typically includes a drift (friction) term and a diffusion term.

o, a( 8
For Brownian motion, the momentum space collision term is often written as —i(A” f )++ DY 9

P '\

where A is the momentum space drift or friction coefficient, and DV is the momentum space diffusion coefficient.

(31,
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0 i O
Following the given form, we combine friction and diffusion effects into a generalized diffusion term — K" l .

ap op’
This implies that K Y isa comprehensive diffusion coefficient matrix encompassing all momentum space random
processes (including friction and diffusion). Although this form is uncommon in some contexts (where friction is

0
typically F(force x f ) ), we adhere strictly to the given equation form.
/4

Ultimately, we obtain the Fokker-Planck equation to analyze:

i j
ngLa_er FGiR+qu+q€[jkp—Bk i=i K”i +S(x,p,7) 3
ot ym ox' ym op' Oop' op’

where K7 isa generalized momentum space diffusion coefficient matrix, and S (X, p, Z) is the source or sink term for
particles in phase space. For subsequent discussion, we introduce shorthand notation:
i
Particle velocity: V' = i
ym

ijk

Total deterministic force on the particle: F ! (X,p) = FéR +qFE T qge v/ B* Using these symbols, the equation can

be more concisely expressed as:

g vfa_fmi:i(mi

+ -
ap./

. ‘ S
ot ox' op' op' j+ (x,p,t) @

2.3 Physical Significance of Equation Terms

Let us analyze the physical significance of each term in the equation in detail:

1.——: This is the time evolution term of the distribution function. It describes the rate of change of particle number

ot

density at a point (X, p) in phase space with time. If the system is in steady state or equilibrium, this term is zero.

2.V F : This is the spatial convection term (or advection term). It describes the change in the distribution function in
X

phase space due to particles flowing from one region to another in space because of their macroscopic velocity v . This
term reflects the collective motion of particles in real space.

3. F' —— ¢ This is the momentum convection term (or drift term). It describes the change in the distribution function in

op

phase space due to deterministic changes in momentum caused by the deterministic force JF " . This represents
the “drift” or acceleration/deceleration of particles in momentum space.

-FGIR : Gravity induced by general relativistic effects (e.g., background spacetime curvature), reducible to Newtonian

gravity in the weak-field approximation.

-qE ' Force exerted by the electric field E on the charged particle ¢ .
-q¢€ "y B* . Force exerted by the Lorentz magnetic field B on the charged particle g . This force is always

perpendicular to the particle velocity, so the magnetic field does no work but changes the momentum direction.

0 i O

4.— K" l : This is the momentum space diffusion term. It describes the disordered “diffusion” or dispersion”
op op’

of particle momentum in phase space due to microscopic random processes such as inter-particle collisions, thermal

fluctuations in the background medium, and random electromagnetic fields. This term is typically the source of entropy

increase in the system, smoothing the distribution function from local sharp structures to flat and uniform. The positive
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definiteness of the coefficient matrix K” is the key physical condition ensuring it is a diffusion process (rather than
anti-diffusion). It reflects dissipation and randomness within the system.
5.8 (X,p,t) : This is the source/sink term. It represents the increase or decrease in particle number density in phase

space due to non-interaction processes (such as particle generation, annihilation, injection, or removal in specific
position or momentum ranges). For example, new particle production in nuclear reactors or particle absorption by walls
in plasma can be described by source-sink terms.

3. Mathematical Properties and Classification of the Equation

The equation is a linear partial differential equation. Its highest-order derivative is the second-order derivative with
respect to momentum P, while the time derivative is first-order.

3.1 PDE Classification

Based on the nature of the highest-order derivative terms, the Fokker-Planck equation belongs to the class of parabolic
partial differential equations. This classification shares mathematical structures similar to the heat conduction equation
and the Schrodinger equation[34].

; 0
Specifically, the diffusion term —— K'Y lj formally resembles the Laplace operator (or a more general elliptic

op op

operator), and its positive definiteness imparts diffusion effects in momentum space. The presence of the time derivative

—— makes it an evolution equation, describing the system’s dynamic development over time. Parabolic equations are

ot
characterized by information propagating from initial states to future times, with infinite propagation speed (though
actual physical effects are speed-limited).

3.2 Dissipative Nature

The presence of the diffusion term endows the equation with inherent dissipative properties. It tends to smooth the
particle distribution in phase space, reducing sharp gradients and local aggregations, thereby increasing the system’s
entropy[22]. This process physically corresponds to the evolution of the particle system toward equilibrium or a more
disordered state. In the absence of source-sink terms and deterministic forces, momentum diffusion homogenizes the
particle momentum distribution.

3.3 Initial and Boundary Conditions

To uniquely determine the solution of the equation, in addition to the equation itself, we need to specify appropriate
initial and boundary conditions[35].

-Initial condition: f (X,p,O) =1 (X,p) . This specifies the particle distribution in phase space at the initial time
t=0.

-Boundary conditions: The choice of boundary conditions depends on the specific physical problem and the definition
of the phase space domain €2 .

-Homogeneous Dirichlet boundary condition ( S o= 0) : This means that when particles reach the boundary of the
phase space domain €2 , they are immediately removed or absorbed from the system. This is common in systems
describing particle escape or collection.

-Homogeneous Neumann boundary condition (n . KVP f= 0) : This indicates no particle flux through the boundary.
It means particles cannot cross the boundary, which is reflective.

-Periodic boundary conditions: If the system is periodic in space or momentum, periodic boundary conditions can be
imposed.

-Decay at infinity: For problems in unbounded domains R® , it is usually required that f  tends to zero at infinity, and
its derivatives decay sufficiently fast.
4. Existence, Uniqueness, and Stability of Solutions

We employ the Galerkin method, commonly used in functional analysis and partial differential equation theory [34], to
prove the existence of weak solutions, and use energy methods to prove uniqueness and stability.

4.1 Problem Setup and Weak Formulation
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We seek weak solutions to the equation in a bounded, smooth open phase space domain 2 C R® over the time interval

[0,7].

Basic assumptions:
. pi
1.Smoothness and boundedness of coefficients: The convection coefficients €' = —— and F' (X, p) are bounded and

m

sufficiently smooth on €2 . The momentum diffusion coefficient matrix K v (X, p) is C' continuous and bounded on

Q.

2.Positive definiteness of diffusion coefficients: The matrix K7 is symmetric, i.e., K =K. Moreover, there exists
a positive constant A >0 such that for any real vector £ € R* | K7E'E/ > | E[* . This ensures the diffusion
process is physically acceptable (dissipative)[22].

3.Source term: S (ll, t) el’ (Q X [0, T]) , 1.e., the source term is square-integrable in both time and space.

4.Initial condition: fo (u) el’ (Q) , .., the initial distribution function is squareintegrable.

5.Boundary condition: We consider homogeneous Dirichlet boundary conditions f | 20="0 . This means the particle

number density is zero on the boundary.

Function spaces:

0
We expect to find solutions f in the Sobolev space r ([O,T ];H (1) (Q)) , with time derivative a—f in the dual space
t

£ (fo.1):7 ().
Derivation of Weak Formulation
To derive the weak formulation of the equation, multiply both sides by a smooth test function (o(u) S CSO (Q)
(smooth functions vanishing on the boundary of {2 ) and integrate over € . Since CSO (Q) is dense in H, é (Q) , the
final weak form holds for all @ € Hé (Q) [34]
I afgodu+j fgodu+f ]—"’ @du =.[ i([(”ijgoduﬂ[ Spdu (5)
Q Ot op' e op' op’ Q

Now, perform integration by parts on each term:

0 0
1.Time term: J.Qﬁ—j;(pdu = a—f, Q , Where <-, > denotes the duality pairing between H " and H, (1).
A ' H

o

2.Spatial convection term: '[Qvi F(Ddll . Using integration by parts J.((aiA)Bdu = —J.A(G[B)dll-i- boundary
X

term.

J‘Qval —jf vgo du(6)
Since @ € H(l) (Q) , =0 on 0Q , so the boundary term is zero.

0
Expanding ox' (V (/))

0p OV
—+Q—
ox' 4 ox'

10
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0 o'
Since V' = — depends only on momentum P, not on position X, — =0.
p y p W

j via—f.godu:—jgﬂ Op —du

Thus, © ¢ OX' ox’

i

3.Momentum convection term: IQF ! p @du . Similarly, integration by parts:
P

F = du (7)
7 et =t o
Boundary term is zero because @ |,,=0.

i(fi¢):fia—¢+(paii

Expanding op' op' op'

If’a —pcdu = jf;fl 8% jf—godu

Thus, p

i o

@du . Integration by parts:
op’

0
4 Diffusion term: | —| K
Q ap

[ i( ] [k L o 99 s,
2 dp ap’ op'

o

Boundary term is zero because ¢ |,, = 0. This relies on the flux K ¥ —— at the boundary.

op’
5.Source term: Lﬁ(pdu = (Sa¢))L2(Q) .

Combining all terms, the weak form of the equation is:

<%’¢>+IQ Uaaf g(pf va awd fffl du-|_ f—(Pdu (S,0) ©

for all P H(]) (Q) .

For conciseness, we define a bilinear form a ( f, (0) and a linear form L((D) :

o o 8 8 oF!
o(1-0)=[ K L 20 an- [ SB[ g7 an= [ 1w a0

L((D):(S,go) (Formula 11)

The weak form can then be written as:

<%’¢>+a(f,¢):L(¢)) forall p € H, (Q) (12)

with initial condition f (u,0)= f; (u).
4.2 Proof of Existence

The Galerkin method is a powerful tool for constructing a sequence of approximate solutions and proving their
convergence to the true solution through a priori estimates[18].

11
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4.2.1 Construction of Galerkin Approximations
1.Choice of basis functions: H(l) (Q) is a separable Hilbert space, so there exists a complete orthogonal basis of

functions {¢k (ll)}f:1 . These basis functions are typically eigenfunctions of the corresponding elliptic operator, such as

the Laplace operator.

2.Construction of approximate solutions: We seek a finite-dimensional approximatesolution f, N (u,t ) , which is a

linear combination of the first N basis functions, with coefficients as functions of time # :
N
l‘) = ZCk (l‘)¢k (u) (Formula 13)
k=1

3.Galerkin equations: Substitute f, into the weak form and require it to hold for each basis function @ s j=L...,N.

This transforms the partial differential equation into a system of ordinary differential equations:
ofy :
<5,¢j +a(fy.4,)=(5.¢,) forj=1..N (14

Due to the orthogonality of the basis functions (if chosen to be r -orthogonal),

[ dc, :_
<at ,¢j> Z (¢k’¢)L2 :

k=1

Thus, the system becomes:
_+ch a(¢..¢,)=(S.4,) forj=1...N (5

This is a linear system of ordinary differential equations, with coefficients a(¢k,¢/) being constants (since ¢k are

time-independent), and the right-hand side (S ,¢j) time-dependent.
4.Initial conditions: The corresponding initial conditions are ¢, (0) =(f,» ¢J)L2 @

By the theory of ordinary differential equations (e.g., Picard-Lindel6f theorem), for given initial conditions, there exists
a unique solution c(t) = (Cl (l‘) seeesCy (t)) on [O,T] . Thus, the approximate solution fN (ll,t) exists on [0, T] .

4.2.2 A Priori Estimates

A priori estimates are the core of the Galerkin method, proving that the sequence of approximate solutions is uniformly
bounded in certain function spaces, allowing extraction of convergent subsequences.

Multiply the j -th Galerkin equation by ¢ | (t ) and sum over j from 1 to N . This is equivalent to choosing the test

function @ = f, in the weak form.

HfN

2.dt "(fN»fN):(S,fN)LZ(Q) (16)

Now analyze the bilinear form a ( fas o N) :

U af‘N 6fN

& o=l ade“ Iprade IfN - frdu 1)

a(fN’fN):J‘

Process each term:

of, 0 2 )
1.Diffusion term: IQK v fN Vu —du> /IHVP fv ) (by positive definiteness of K”).

op’ op'

12
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0 1c ,0(fy :
Gfl\; du= —EIQVZ Mdll . By integration by parts, using al =0 and

2.Spatial convection term: —I i .
o/ NV ox' ox'

ov'
Jx lza= 0 (boundary term zero), this term is —I fo —d =0.
. : afN ;U

3.Momentum convection term: —J.Q £ N.7: du= I f du By integration by parts, with f) |=0
8.7: :

(boundary term zero), this becomes —I f N P - —du

, 8.7—" ! 8.7-" '

4.Force field divergence term: —J'Q fv— N l = —J‘ f N
8.7-" 8.7-' OF'

Combining the last three terms: ——J. fv : l. —J. fy— g =—— J. fy g —du Wait, correcting the

1 ) .
combination from original: actually from term 3 and 4: EJ.fN 5.7:1/8]?’ —IfN 8.7:'/8p' = —EJ‘f]& 8.7:’/8pl .

26

1 af, >-C, |ff

2()

Let Cp =sup,q |=

So, a(fNafN)Z ﬂ'||foN iZ(Q)

—Cp ”fzv”il(g)

Substitute back into the energy equation'

55 1 () +2 NV i 1 ) =Cor 1 1 gy <S () g S () ]y 19

1 €
Using Young’s inequality ab < > a’ +—b*, with e =1:
€

1 1
HS(Z) (Q) HfN (t) Q) < EHS(I) Z(Q) +EHfN (t) (Q) (19)
Substitute and rearrange:
1
> dt H Sy Ol + Vel p R (CF +§j” £ HS o) 20
Ignoring the non-negative momentum gradient term and multiplying by 2:
HfN 1 2(2€, +1) )| (2) fo +HS o @D

Let C,p =2C, +1. Applying Grénwall’s inequality:

CGRt + J‘te Cor(t-7)
0

5 (7)

iz(g) (as fy (0) is the I’ projection of f;)and S € L’ (Qx [O,T]) , the integral term

o <75 (0)

HfN EZ (Q)dT (22)

Since HfN (0) i(n) < ”fo

on the right is bounded on [O,T ] . This indicates that H fv (t )

is uniformly bounded on the entire time interval

2
(o)
[O,T ], with the bound independent of N .

13



Computational Mathematics Today https://cmt.cultechpub.com/index.php/cmt
2 1)1

2oy (CF +§j SIS @)
2 1 2 T

LZ(Q) _EHfN (O) LZ(Q) + /1_[0 vafN (t)

RSN

T
Z is bounded on [O,T ] , all terms on the right are bounded. Therefore, .[0 va I (t )

2
from0to T:

) ) 1d 2
Next, integrate the inequalit EZHfN (l‘) 2() + ﬁ“vafN

2(Q)

S ()

2
e

(Formula 23)
dt

2
(@)

1 ¢er
;(Q) dt+§I0 s (7)

Since Hfzv (t) iz(sz)
also uniformly bounded.
This proves that the sequence {fN} is bounded in L” ([O, T];L2 (Q)) :LX(Q)) and in L’ ([O,T];H; (Q)) (H'

norm in the momentum direction).

2
@) dt is

4.2.3 Convergence

From the a priori estimates, the sequence { f N} :

Is uniformly bounded in L” ([0, T];L2 (Q)) Is uniformly bounded in r ([0, T] ; Hll) (Q))

0
Additionally, from the weak form of the Galerkin equations <%’ ¢> = ( S ,¢) —a ( f N,¢) , using the boundedness
t

%
ot

is also

of f n and Vp f ~ » and the boundedness of coefficients v , F ! , K ¥ can be shown that
2([orpH (@)

uniformly bounded.

By the Banach-Alaoglu theorem and Aubin-Lions lemma, from the sequence { f N} , we can extract a subsequence (still

denoted { f N} for simplicity) and a function f° (u,t ), such thatas N — oo [18]:
- fy — f weakly in r ([O,T];Hé (Q))

_fN — f weak* in L’ ([O,T];Lz (Q))
0 0 2 -1
_GL;V—\G—C weakly in L ([O,T];H (Q))

-The Aubin-Lions lemma further ensures f, —> f strongly in r ([O,T ];L2 (Q)) . This strong convergence
simplifies the proof since the equation is linear.

4.2.4 Verification that the Limit is a Weak Solution

To prove that the limit function f is a weak solution of the equation, integrate the Galerkin equations over time from 0
to T:

JZ<%’¢>"”I:@UN’¢W=I:(S,<0)dt (24)

for any @ € H, (Q)

As N — 00, due to the linearity and continuity under weak convergence, we can interchange the limit with the
integrals and weak forms.

The left first term: J-Z <ag—;v, (0> dt —> I: <% , g1)> dt.

14
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The left second term: I:a(fN,gz)) dt —> J.Za(f,(o)dt.

T
The right term: JO (S,@)dt remains unchanged.

Thus, the limit function [ satisfies:
T af T
IO |:<5,(0> +a(fa (0):|dl = jO(S,(D)dt (25)
forall ¢ € H, (Q) , meaning f is a weak solution of the equation.
Finally, the initial condition f (ll, O) = fo (ll) is typically satisfied using the property f € C ([0, T ] ;L (Q)) ,
which can be proved by stronger results from the Aubin-Lions lemma or energy estimates.

4.3 Proof of Uniqueness

Uniqueness of solutions is typically proved by comparing two assumed solutions and using energy methods[34]. This
approach is common for parabolic PDEs[35].

Assume there are two weak solutions f1 and f2 satisfying the same initial condition [ (u, O) = fo (ll) and the same

source term S (u,t) .

Let w= f, — f, . Then w satisfies the homogeneous equation:

<%,gp>+a(w,g0) =0 forallpe H,(Q) (26)
t

with W(ll, 0) =1 (u,O) -1 (u,O) =

Choose the test function @ =W. we I’ ([0, T] ; Hé (Q)) , this choice is permissible.

> dt H (w,w)=0 27)

From the analysis in the existence proof, a (W, 2) Cr. ”W”[Z} (@) Substitute and arrange:

1d 2 2
EEHW(I‘) 2@ )~ Cr ||W||12(Q) <0 (28)
22 o) >0, we obtain a differential inequality:
L0 50 09
or:
—Hw( Lz( <2C, |w(z) ED
Applying Gronwall’s inequality again:
2
Hw(t) @) SHW(O) @) > (31
Since HW(O) EZ(Q) =0, we deduce Hw(t) EZ(Q) <0.

15
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Because the norm must be non-negative, Hw(t )

;(Q) =0 forall £€[0,T].

This means w(u, t ) =0 almost everywhere, hence f1 = f2 . Therefore, the weak solution of the equation is unique.

4.4 Stability of Solutions

Stability refers to the continuous dependence of the solution on small perturbations in initial conditions and source
terms. If small changes in initial conditions or source terms result in small changes in the solution, the equation is
stable[34].

Consider two solutions f1 and f2 , corresponding to initial conditions fo 1 fo , and source terms S 1 S2~

Let w= f1 — f2 . Then w satisfies the non-homogeneous equation:
ow
<E’¢ +a(w,0)=(S,-S,,0) 32)

with w(w,0) = £, (u)— /., (u).

Choose the test function ¢ = W:

1d 2
EEHWO) 2(Q) ta (W’ W) = (Sl - Sz’ W)Lz(Q) (33)
Using a (W, W) > ”VPW ;(Q) -C. ”W”iz(g) and Young’s inequality

(S, =S,,w) <, -5,

1 2 1
g e < 5||Sl =5l +5||w||iz :

1d 1 1

EEuw(z) p o <Ce[w() p o +§Hsl (1)-5,(1)[.. o +5Hw(t) p o GO
d
Euw(z) piay S CAD WO g, 18 () =S ()] ) 69

Let C

stab

=2C,. +1. Applying Gronwall’s inequality again:
2

HW(I) Q) SHW(O) Fl(‘[)_SZ(T)
This inequality quantifies how perturbations propagate over time. It shows that the difference between solutions
FAORFAQ)

perturbations ”S1 =S,

2

Cslabt ! Csmb(tfr)
e + L}e EZ (Q)d T (36)

(2)

) and source
(@)

2(9) grows exponentially with the differences in initial conditions ” fo’1 - fo,z

2 ([0 T Q)) . Thus, if the initial perturbation and source perturbation are sufficiently small, the

difference between solutions remains small. Therefore, the solution of the equation is continuously dependent on the

initial conditions and source terms in the I* norm sense, i.e., it is stable [34,35].

5. Non-Negativity of Solutions

In physics, the distribution function f (ll,l‘ ) represents particle number density, so it must be non-negative ( f = 0).

This is an important physical constraint[21]. We prove that, under appropriate initial conditions and source terms, the
solution of the Fokker-Planck equation maintains non-negativity.

Assumptions:

1.Initial condition: fo (u) > 0 almost everywhere (i.e.) in €.

2.Source term: S(u,t) >0 almost everywhere in €2 X [0, T].
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3.Boundary condition: Homogeneous Dirichlet boundary condition f |5, =0

4 Diffusion coefficient: K is symmetric and positive definite, i.c., K ijfié:j >A|& ]2 for some positive constant

A>0.
Proof:

We use a common technique to prove non-negativity by introducing an auxiliary function to measure the negative part
of the solution. Define f~ (u,t) = max (—f(u,t), 0) . Our goal is to prove f~ =0, meaning f >0.

Choose the test function ¢ =—f_ . This choice is allowed because if f € H, é (Q) , then its negative part f also
belongs to H,) (Q)

Substitute ¢ = — f_ into the weak form:

<gft >+a(f _F)=(S=1) 67

Note that the integral J.Q(-)fdu is only over the region— {ueQ: f (ll,t ) <0}, because f =0 where f>0.1In
this negative region, —f_ = f .

Analyze each term:

mererm (&L Vol P uld gy 1d
1.Time term: <5,— —>_.[{_;'<0} Y fdu_ZdtJ.{fd’}f du= > Hf (t)

2
@)’
2 Bilinear form a(f,—f_) terms:

ia(_f)dII:—I ﬁ/l@

ox' <0y oy

afZ . . afl

——du . Integrating by parts over {f <0}, using =— =0 and
<o ox' ox'

f |aQ: 0 (implying f~ |aQ= 0), this term is 0.

(a).Spatial convection term: —J-Q fv du..

As in the existence proof, this term is ——J.

0= f 9 ’

(b).Momentum convection term: I fF — J. Iy OTf du This is ——J‘ v<” gy —du .
< < ‘ p
Integrating by parts over { /< 0}, this becomes — J y 01 f? af
(c).Force field divergence term: —I f oF ( —I{f o [ 8.7:
1 ) 6}"’ ~ . a;f’
Combining these three terms: (E - )J.{f<0} fT——du= __I{/<01 fr—
. ) 2
Using C. =sup,_, > o , this term < C,. Hﬁ(t) 2@)
of (- J

3.Diffusion term: J KV -7 _I
o op' o' {f<0} op’ ap

By positive definiteness of K , this term > /Ij

{/<0}

17



Computational Mathematics Today https://cmt.cultechpub.com/index.php/cmt

4.Source term: (S,—ﬁ) = J‘lfd)ledu .

[

Since we assume S > 0 and in the region {f <0}, f <0, thus Sf <0. So this term is non-positive.

Integrating all terms, we obtain the inequality:

a0

2 2
Yoy = Cr I(1) co S_[{_f<0}Sfd“SO (38)

2dt

, and arranging:

2
“li(@)

d 2
Zuf— (t) *(Q

 S2C: |10

ED

Applying Gronwall’s inequality:

&> (40)

|7 (¢

2
) *(Q) < Hf* (O) *(Q
From the initial condition f >0, this means f (0) = max( /5,0 )=

Thus, Hf

_0 forall £€[0,7].

This means f_ (u, t ) =0 almost everywhere, hence f (u,t ) > ( almost everywhere. This proves the non-negativity

of the solution.
6. Derivation of Conservation Laws and Physical Interpretation

Conservation laws describe how physical quantities change during system evolution. We integrate over the entire phase
space R , assuming the distribution function f* and its relevant derivatives decay sufficiently at infinity so that all
boundary terms in integration by parts are zero[19]. This approach is fundamental in kinetic theory [31].

6.1 Particle Number Conservation

Physical quantity: Total particle number N, tot J‘ f X,p, )d xd® p Integrate the original equation over the

f [af I afjd j ( [ ”afj SJdu(41)
o o op' op' op’

entire phase space R® [19]:

1.[R6 .[Rf’fd

 Of
2. IR le o —I f —dll 0 (by integration by parts, using Vv independent of x' , boundary term zero).

0
3. I F f ——du =—J. J —dll (by integration by parts, boundary term zero).

0
4._[ . K f du =0 (by integration by parts, boundary flux zero).
“op (" ap!

5. IR(,Sd“ .
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Summing the terms, the rate of change equation for total particle number is:

dZ; -[. fﬁdu [ Sdu @)

dN

—.[de J.f—du (43)

Physical interpretation: The total particle number is generally not conserved. Its rate of change depends on two main
factors:

-Source-sink term _[Sdu : This is the most direct source of particle number change.

If § > 0, it indicates new particle generation or injection; if .S < 0, particle removal or annihilation.
i

-Force field divergence term J. f —idll : This reflects the compression or expansion effect of the external force field

i

in momentum space. If ———# 0, the force field is not divergencefree in momentum space. For example, for the

o 4 . P
relativistic Lorentz force ge "I B* | since v = p’ / ( ]/m) and ¥ depends on p, P (qf "B k) is generally
P

nonzero, leading to nonconservation of particle number. This is a more complex mechanism for particle number change,
related to ’squeezing” in phase space.

The total particle number is conserved only when the source-sink term is zero and the total force JF s divergence-free
i

6}"‘ _0)
op'

in momentum space (i.c.,

6.2 Total Momentum Conservation

Physical quantity: Total momentum P (t) = J.Répkf(x,p,t)d%d}p [19,31]

1

Multiply the original equation by the momentum component pk and integrate over RC:

I LR A Y (X PR AT PR
R at ax op' R op' op’

Analyze each term:

L pt T au=-Lp

ot dt
 of . . ki i
2. I p V= P = —J-RG f )du = 0 (integration by parts, p"V'independent of X', boundary term zero).
3. [0 du = —jw (p"ff )du
Expanding the integrand: i( k]:') o’ = F'+p 8.7'— = 510,.’/?" +p* ai =F*+p* 8i
op' op' ' op' op'
oF"

Thus, this term is —J.Réf]:kdu—J.RGp f—dll
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4.IRGp 6p’( afj u= —J‘RGK”iaL{du

op’ op’ op
k
Since ai =0,, , this becomes —'[ KY idu
op’ ®op!
K
5. IRG p Sdu.

Summing the terms, the rate of change equation for total momentum is:

dP,ft_I f]—“kdu+j P f—d I K" fdu+j P Sdu (45)

Physical interpretation: The total momentum is generally not conserved. Its rate of change is influenced by:

-Total external force R I fF “du : This is the most direct source of momentum change, representing the macroscopic

average of deterministic forces on all particles in the system.

-Force field momentum divergence term J. pk f —l.dll : Similar to particle number conservation, if the force field is

not divergence-free in momentum space, it causes additional momentum change.

o

Fd U : This is momentum dissipation or exchange due to random processes (diffusion
P

and friction) in momentum space. For example, collisions with background medium can transfer particle momentum to
the medium, leading to nonconservation of system total momentum.

_Diffusion/friction term j K4

-Source term J. kadll : Newly generated particles carry momentum, directly changing the system’s total momentum.

Total momentum is conserved only when the sum of all non-conserving terms (external force, force field divergence,
diffusion/friction, and source) is zero.

6.3 Total Energy Conservation

Physical quantity: Total energy E, (t ) = .[ R(’E (p) f (X, p.t ) d’xd’ p , where

E (p) =ymc’ = \/ (|p|c)2 +(mc®)* s the relativistic total energy (including rest mass energy)[25,26]. Multiply the
original equation by energy £ and integrate over R®:
[ E Uy A = E| = O Vg D)4 |du ws)
R’ 6t 6x op' R\ op' op’

Analyze each term:

L Eafdu—iE[
ot dt

of
2. J. EV dll = —j f EV )dll 0 (integration by parts, EV independent of x' boundary term zero).

of
EF' — - E a
[ EF du= f o (EF o
Expanding the integrand: aipl(E}“’) — 2?}-, + Eaa_-;:l
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i2
We know 8_E =i.(\/(|p|c)2 +(mc*)? ) =P i
o' op' E

o OF' .
Thus, this term is —J.Réf(vlfl )du — J.R6Edeu . Note that the magnetic force qukv./Bk does no work, i.e.,
P

(qei’kv-’Bk)vi =q(vxB)-v=0.

.| £ gk L du=-| KLY g
= op' op’ - op’ opf

Using 8_ =V', this becomes —'[ K’ iv’du .
op' ®op’
.| ESdu.
R

Summing the terms, the rate of change equation for total energy is:

dE tot
dt

oF' g of
:IRGf(V'FGR +qV'E)d“+IR5Ef§d“_IRGKJ afjv du+.[R6ESdu 47

Physical interpretation: The total energy is generally not conserved. Its rate of change is influenced by:

-External force work term R j f (V ‘K +qv- E) du : Gravitational and electric fields do work on particles, directly

changing particle energy. Note that the Lorentz magnetic force does no work, so it does not contribute directly to this
term.

i

-Force field momentum divergence term jEf —id U : Additional contribution to total energy from nonuniformity or
P
. e i O
momentum dependence of the force field in momentum space. - Diffusion/friction dissipation term —IK ;V du:
/4

Energy dissipation or exchange due to random processes (diffusion and friction) in momentum space. For example,
collisions with background medium convert particle kinetic energy to internal energy (heat) of the medium, leading to
system energy loss.

-Source term IESdu : Newly generated particles carry energy, directly changing the system’s total energy.

Total energy is conserved only when the sum of all non-conserving terms is zero.
7. Distribution in Equilibrium States

In physical systems, after long-term evolution, if external conditions remain unchanged, the system often reaches a
stable state, namely the equilibrium state. In the equilibrium state, the system’s macroscopic properties no longer

change with time. For the distribution function f (X,p, t ) , this means:

1.Time independence: — =10.

2.No source-sink term: S(X,p, t) =0.

Let the equilibrium distribution function be f0 (X,p) . Substituting these conditions into the original Fokker-Planck

equation yields the equilibrium equation:

v"%ﬂfi%:i KJ% (48)
ox' op' op' op’
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In the context of thermodynamic equilibrium, an important concept is detailed balance. Detailed balance is a stronger
condition than macroscopic balance, requiring that the rates of every microscopic process and its reverse in phase space

are equal, leading to zero net particle flux J, everywhere in phase space[31]. This principle is crucial for understanding

equilibrium in statistical mechanics[20].

The particle flux J in the Fokker-Planck equation consists of two parts in phase space: - Spatial convection flux:

Ji=v]
o

- Momentum drift-diffusion flux: J' = F'J = K7 =
14 apj

Under the detailed balance assumption, we require J, = 0, which means:
Vif,=0 foralli 49)

%,-: 0 foralli (50)

F'fy—K"
o o

Physical discussion:

For the first condition V' fo =0:1f fo is not the trivial zero distribution, this directly implies V=0 , 1.e., particles are

at rest. This clearly does not fit a generally moving particle system. In actual physical scenarios, V' fo =0 is often

interpreted as no macroscopic particle flow in phase space in equilibrium, or the distribution function f|, being uniform

0
in space (ig =0 |, making the spatial convection term vanish in the equilibrium equation. The core equilibrium
X

condition is zero net flow in momentum space:

0 ,
K" —fo. =F'f, 51)
op’
This equation is key to equilibrium, describing the precise balance in momentum space between particle drift caused by
deterministic force ' and momentum diffusion caused by random processes (diffusion coefficient K v ).

Thermodynamic Equilibrium Distribution: Maxwell-Boltzmann Distribution

In many physical systems, if particles are in equilibrium with a heat bath at temperature 1 , and external forces are
conservative, the equilibrium distribution function typically follows the Maxwell-Boltzmann distribution [23,24,31].
This distribution has the exponential form:

Jus (x.p) = Cem[—%j = Cexp(~pE,, (x.p)) (52)

where C is the normalization constant, [3 ZE is the inverse temperature ( k& is Boltzmann’s constant), and

E (X,p) is the total energy of the particle. This form is well-established in statistical mechanics[32]. For relativistic

tot

particles, the total energy usually includes kinetic and potential energy:

E,,(x.p)=(plc)’ +(mc®)? +Ug (x)+U, (x) (53)

Here, \/ (|p| )’ +(mc*)* is the relativistic kinetic energy (including rest mass energy), U, R (X) is the gravitational
potential energy, and U (X) = q¢E (X) is the electrostatic potential energy (¢E is the electrostatic potential).

To verify if the Maxwell-Boltzmann distribution is a solution to the momentum balance condition in equilibrium, first

compute the partial derivative of f,,, with respect to momentum pj :
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af aE:tot — al?tot
ng = CeXp(_ﬂEtot )K_IB ap/ j - _ﬂ apj fMB (54)

%,

Now substitute this expression into the momentum balance condition K y 20— ﬁ) :

op’ -
i OE, i
K’ (_ﬂatjthB =F" fup (59
Since f,,; is generally nonzero in phase space (except at infinity), divide by f,;:

-BK" —%E"’. =F' (56)

J

This is the key condition for the Maxwell-Boltzmann distribution to be an equilibrium solution.

OE
Further analyze a—"j" For the relativistic energy £ (p) = \/ (|p| 0)2 + (mc2)2 :

P
E
0 fot, — 0 : (\/(|p|c)2 + (mc?)? )+ aU—GM aL.E (57)
op’  op’ op’ op’
. . . - oU U,
Since potential energies U ., and U, depend only on position X, not on momentum P, o =0 and o/ =0.
P P

OE,, p'c _pld p
2

P J@pley +(me*y:  yme® ym

Thus,

Substitute this result back:

F'==BK"V (58)
Physical interpretation: Generalized Einstein relation
This equation is a generalized Einstein relation. It indicates that in thermodynamic equilibrium, the total deterministic

force JF' acting on the particle must be related to its average velocity v/ and the momentum space diffusion

coefficient K7, inversely proportional to the system temperature 1 . This condition represents the precise balance
between the “drift” effect produced by deterministic forces and the random diffusion effect.

Now substitute the specific form of JF "
Fly+qE +qe" V' B =—BK"V (59)

For the Maxwell-Boltzmann distribution to be a strict equilibrium solution, the above relation must hold everywhere in
phase space. This imposes strict constraints on the force fields and diffusion coefficients:

1.Influence of magnetic field (Lorentz force): The Lorentz magnetic force ge yIBY s orthogonal to the particle
velocity, so it does no work. In the classical Maxwell-Boltzmann distribution, potential energy typically depends only

ik

on position. If B # 0, the force term g¢ v/ B* must be exactly canceled by —fK 7y/ . This usually requires the

diffusion coefficient K” to have a very specific structure (e.g., it may include an anisotropic part related to the
magnetic field), or the magnetic field effect is weak enough to be neglected. In more general physical scenarios, the
presence of magnetic fields may prevent the system from reaching strict Maxwell-Boltzmann thermodynamic
equilibrium, possibly reaching a quasisteady state or equilibrium with macroscopic flows (such as rotation).

2.Conservative forces and classical Einstein relation: If gravitational FGiR and electric force gF " are conservative (i.e.,
derivable from negative gradients of potentials U, (X) and U, (X) ), and no magnetic field (or negligible), the

condition simplifies to FG[R +qgE = -pK Yy In classical Fokker-Planck equations, when K Vs isotropic constant
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DS , and drift is friction —Api , the Einstein relation is usually A= ﬁD In our generalized form, this relation is

more complex, requiring precise coupling between conservative force terms and momentum space diffusion through
temperature.

3.Spatial uniformity or zero spatial flow: Although the spatial convection term v a—(:, was omitted in the proof, in the
X

equilibrium equation, this term must be zero. This means that in equilibrium, either the distribution function f, is

uniform in space (%20) , or there is complex spatial-momentum coupling making Ivi fod3 p=0 (o

X

macroscopic velocity), or v 6_(3 is exactly canceled by integrals of momentum space drift and diffusion terms. The
X
latter usually does not occur in thermodynamic equilibrium, as it implies all macroscopic flows stop.

According to these we find: The Maxwell-Boltzmann distribution fo (X,p) = Cexp(—E (X,p) / (kT )) is an

tot
equilibrium solution of the Fokker-Planck equation, but only under very ideal and restrictive conditions. The system
must be in strict thermodynamic equilibrium and exchange energy with a constant temperature 1 heat bath. It must
also satisfy the detailed balance condition, meaning that the net particle flux J, is zero everywhere in phase space,

i o

particularly the momentum space balance condition JF ! fo = K7 —= . Additionally, the total deterministic force JF !
op’
acting on particles must satisfy the generalized Einstein relation JF b= PK v/, where K” is the momentum space

diffusion coefficient and v’ is the particle velocity. This condition requires that the effects of all non-conservative
forces (such as magnetic forces) can be exactly canceled, or that the diffusion/friction process has a very precise
relationship to temperature to maintain this balance. Furthermore, there must be no external source-sink term S =0,

and no macroscopic spatial particle flow, meaning that V' a—(; =0, typically by assuming spatial uniformity or a
X

distribution that reaches equilibrium under potential action. Under these ideal conditions, the Fokker-Planck equation
indeed describes how the particle system evolves and reaches thermodynamic equilibrium. However, in more general
physical scenarios, especially with strong magnetic fields, non-conservative forces, or complex dissipation mechanisms
not in strict equilibrium with the heat bath, the steady-state (or quasi-steady-state) distribution of the equation is usually
no longer a simple Maxwell-Boltzmann form, possibly requiring numerical methods or analytical solutions under
specific simplifications.

8. Conclusion

In this work, we have presented a detailed derivation and analysis of the Fokker-Planck equation for charged particles in
a relativistic plasma, set within a general relativistic framework. By extending the classical Liouville equation to
include stochastic perturbations, we derived the Fokker-Planck equation, emphasizing its applicability to plasma
dynamics and cosmic ray propagation. We systematically explored the mathematical properties of the equation,
including its classification as a parabolic partial differential equation, and proved the existence, uniqueness, and stability
of weak solutions. Through this analysis, we highlighted the fundamental role of the diffusion and drift terms in
describing particle transport under the influence of both deterministic forces, such as gravity and electromagnetism, and
random interactions with the background medium. We also derived key conservation laws, providing insights into the
behavior of particle number, momentum, and energy in such systems, as well as the conditions under which these
quantities are conserved or dissipated. Finally, the equilibrium distribution in the system was shown to converge to a
form analogous to the Maxwell-Boltzmann distribution under specific conditions, linking this relativistic plasma model
to well-known statistical mechanics frameworks. Our study provides a comprehensive understanding of the Fokker-
Planck equation in the context of relativistic plasma dynamics, which is crucial for further research in astrophysics,
including cosmic ray propagation and the dynamics of interstellar and galactic plasmas.
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