Fokker-Planck Equation in a Astrophysical Plasma Dynamics Model and Its Property Analysis

Authors

  • Junyu Luo College of Physics and Electronic Science, Hubei Normal University, Huangshi, 435002, China Author
  • Jing He College of Physics and Electronic Science, Hubei Normal University, Huangshi, 435002, China Author

DOI:

https://doi.org/10.64229/05r44g30

Keywords:

Fokker-Planck Equation, Plasma Dynamics, Astrophysics, Partial Differential Equation, Conservation Laws, Equilibrium Distribution

Abstract

The propagation of plasma beams, especially those from stellar explosions, plays a crucial role in shaping the dynamics of interstellar media, cosmic ray acceleration, and galaxy evolution. This study presents a comprehensive mathematical model describing the evolution of these plasma beams in galactic environments, incorporating deterministic forces from gravity and electromagnetism alongside random interactions with turbulent interstellar media. We derive a generalized Fokker-Planck equation that describes the distribution of particles in phase space, extending the classical Liouville equation to account for diffusion processes in momentum space. The equation includes the effects of weak-field gravitational forces, electric fields, magnetic fields, as well as random perturbations arising from plasma turbulence and magnetic fluctuations. We rigorously analyze the mathematical properties of the equation, proving the existence, uniqueness, and stability of weak solutions. Additionally, we derive key conservation laws describing the particle number, momentum, and energy, and investigate the conditions under which these quantities are conserved or dissipated. In equilibrium states, the particle distribution is shown to converge to a form analogous to the Maxwell-Boltzmann distribution, emphasizing the connection between plasma dynamics and classical statistical mechanics. Our study provides a unified framework for understanding plasma transport in astrophysical environments, offering profound insights into phenomena such as cosmic ray propagation and the evolution of supernova remnants. This research lays an important foundation for future studies on the interactions between particles, electromagnetic fields, and turbulent media in astrophysical settings.

References

[1]Parker, E. N. The interstellar dynamical theory of cosmic rays. Phys. Rev. 110, 1445- 1459 (1958).

[2]Jokipii, J. R. Cosmic-ray propagation. I. Charged particles in a random magnetic field. Astrophys. J. 146, 480 (1966).

[3]Chandrasekhar, S. Stochastic problems in physics and astronomy. Rev. Mod. Phys. 15, 1-89 (1943).

[4]Webb, G. M. Relativistic transport theory for cosmic rays. Astrophys. J. 296, 319-330 (1985).

[5]Thorne, K. S. & Blandford, R. D. Modern Classical Physics: Optics, Fluids, Plasmas, Elasticity, Relativity, and Statistical Physics (Princeton Univ. Press, 2017).

[6]Potekhin, A. Y. Atmospheres and radiating surfaces of neutron stars. Phys. Usp. 57, 735-770 (2014).

[7]Shalchi, A. Nonlinear cosmic ray diffusion theories. Astrophys. Space Sci. Libr. 362 (2009).

[8]Yan, H. Cosmic ray transport in turbulent fields. Living Rev. Comput. Astrophys. 1, 3 (2015).

[9]Ptuskin, V. S. Propagation model for cosmic rays in the galaxy. Astrophys. Space Sci. 272, 95-104 (2000).

[10]Strong, A. W., Moskalenko, I. V. & Ptuskin, V. S. Cosmic-ray propagation and interactions in the galaxy. Annu. Rev. Nucl. Part. Sci. 57, 285-327 (2007).

[11]Dermer, C. D. & Menon, G. High Energy Radiation from Black Holes: Gamma Rays, Cosmic Rays, and Neutrinos (Princeton Univ. Press, 2009).

[12]Longair, M. S. High Energy Astrophysics (Cambridge Univ. Press, 2011).

[13]Waxman, E. Gamma-ray bursts and cosmic ray origin. Astrophys. J. Lett. 452, L1-L4 (1995).

[14]Vietri, M. Foundations of high-energy astrophysics. Astrophys. J. 661, L13-L16 (2007).

[15]Risken, H. The Fokker-Planck Equation: Methods of Solution and Applications (Springer, 1989).

[16]Pavliotis, G. A. Stochastic Processes and Applications: Diffusion Processes, the FokkerPlanck and Langevin Equations (Springer, 2014).

[17]Arnold, V. I., Kozlov, V. V. & Neishtadt, A. I. Mathematical Aspects of Classical and Celestial Mechanics (Springer, 2006).

[18]Lions, P.-L. Mathematical Topics in Fluid Mechanics: Volume 2: Compressible Models (Oxford Univ. Press, 1998).

[19]Cercignani, C. The Boltzmann Equation and Its Applications (Springer, 1988).

[20]Villani, C. A review of mathematical topics in collisional kinetic theory. Handb. Math. Fluid Dyn. 1, 71-74 (2002).

[21]Lions, P.-L. & Toscani, G. Diffusive limits for finite velocity Boltzmann kinetic models. Rev. Mat. Iberoam. 13, 473-513 (1997).

[22]Desvillettes, L. & Villani, C. On the trend to global equilibrium in spatially inhomogeneous entropy-dissipating systems: The linear Fokker-Planck equation. Commun. Pure Appl. Math. 54, 1-42 (2001).

[23]Boltzmann, L. Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen. Sitzungsber. Akad. Wiss. 66, 275-370 (1872).

[24]Maxwell, J. C. On the dynamical theory of gases. Philos. Trans. R. Soc. Lond. 157, 49-88 (1867).

[25]Synge, J. L. The Relativistic Gas (North-Holland, 1957).

[26]Israel, W. Relativistic kinetic theory of a simple gas. J. Math. Phys. 4, 1163-1181 (1963).

[27]Dermer, C. D. & Böttcher, M. Synchrotron radiation from shock waves in active galactic nuclei. Astrophys. J. 295, 599-610 (1985).

[28]Meszaros, P. Theories of gamma-ray bursts. Annu. Rev. Astron. Astrophys. 40, 137-169 (2002).

[29]Blandford, R. D. & Eichler, D. Particle acceleration at astrophysical shocks: A theory of cosmic ray origin. Phys. Rep. 154, 1-75 (1987).

[30]Bell, A. R. Turbulent amplification of magnetic field and diffusive shock acceleration of cosmic rays. Mon. Not. R. Astron. Soc. 353, 550-558 (2004).

[31]Liboff, R. L. *Kinetic Theory: Classical, Quantum, and Relativistic Descriptions* (Springer, 2003).

[32]Krall, N. A. & Trivelpiece, A. W. *Principles of Plasma Physics* (McGraw-Hill, 1973).

[33]Weinberg, S. *Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity* (Wiley, 1972).

[34]Evans, L. C. *Partial Differential Equations* 2nd edn (American Mathematical Society, 2010).

[35]Glassey, R. T. *The Cauchy Problem in Kinetic Theory* (SIAM, 1996).

Downloads

Published

2025-08-25

Issue

Section

Articles