Quantum-Enhanced Machine Learning: Algorithms and Challenges in the Noisy Intermediate-Scale Quantum Era
DOI:
https://doi.org/10.64229/jvy76115Keywords:
Quantum Machine Learning, Quantum Computing, Quantum Algorithms, Variational Quantum Circuits, NISQ, Quantum Supremacy, Hybrid AlgorithmsAbstract
The rapid advancement of quantum computing hardware and software has ushered in a new era for computational science, promising to tackle problems that are intractable for classical computers. Parallelly, machine learning (ML) has revolutionized data analysis and artificial intelligence. The confluence of these two fields, known as Quantum Machine Learning (QML), aims to harness the principles of quantum mechanics-such as superposition, entanglement, and interference-to enhance and redefine classical machine learning algorithms. This survey provides a comprehensive overview of the burgeoning field of QML. We begin by elucidating the fundamental quantum concepts that underpin QML approaches. We then present a detailed taxonomy and analysis of prominent QML algorithms, categorizing them into quantum-enhanced classical models and fully quantum models. Key families of algorithms discussed include Quantum Support Vector Machines (QSVM), Quantum Neural Networks (QNNs), and Quantum Generative Adversarial Networks (QGANs). For each, we explain the theoretical quantum advantage, the circuit implementation, and the current limitations. Furthermore, we delve into the critical challenges facing the practical realization of QML, including the pervasive issue of noise in Noisy Intermediate-Scale Quantum (NISQ) devices, the problem of barren plateaus in training quantum circuits, and the complexities of efficient data encoding (quantum feature maps). We also present a small-scale experimental simulation of a variational quantum classifier on a standardized dataset, demonstrating its principle and comparing its performance with a classical counterpart. Finally, the paper discusses the future trajectory of QML, highlighting the importance of error mitigation, hybrid quantum-classical architectures, and the development of quantum-specific learning inductive biases. We conclude that while fault-tolerant quantum computers remain on the horizon, QML represents a paradigm shift with the potential to deliver profound computational advantages in the coming decades.
References
[1]Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., & Lloyd, S. (2017). Quantum machine learning. Nature, 549(7671), 195-202. https://doi.org/10.1038/nature23474
[2]Preskill, J. (2018). Quantum computing in the NISQ era and beyond. Quantum, 2, 79. https://doi.org/10.22331/q-2018-08-06-79
[3]Havlíček, V., Córcoles, A. D., Temme, K., Harrow, A. W., Kandala, A., Chow, J. M., & Gambetta, J. M. (2019). Supervised learning with quantum-enhanced feature spaces. Nature, 567(7747), 209-212. https://doi.org/10.1038/s41586-019-0980-2
[4]Cerezo, M., Arrasmith, A., Babbush, R., Benjamin, S. C., Endo, S., Fujii, K., ... & Coles, P. J. (2021). Variational quantum algorithms. Nature Reviews Physics, 3(9), 625-644. https://doi.org/10.1038/s42254-021-00348-9
[5]Schuld, M., & Petruccione, F. (2021). Machine learning with quantum computers. Springer. https://doi.org/10.1007/978-3-030-83098-4
[6]Harrow, A. W., Hassidim, A., & Lloyd, S. (2009). Quantum algorithm for linear systems of equations. Physical Review Letters, 103(15), 150502. https://doi.org/10.1103/PhysRevLett.103.150502
[7]Rebentrost, P., Mohseni, M., & Lloyd, S. (2014). Quantum support vector machine for big data classification. Physical Review Letters, 113(13), 130503. https://doi.org/10.1103/PhysRevLett.113.130503
[8]Albash, T., & Lidar, D. A. (2018). Adiabatic quantum computation. Reviews of Modern Physics, 90(1), 015002. https://doi.org/10.1103/RevModPhys.90.015002
[9]McClean, J. R., Romero, J., Babbush, R., & Aspuru-Guzik, A. (2016). The theory of variational hybrid quantum-classical algorithms. New Journal of Physics, 18(2), 023023. https://doi.org/10.1088/1367-2630/18/2/023023
[10]Lloyd, S., & Weedbrook, C. (2018). Quantum generative adversarial learning. Physical Review Letters, 121(4), 040502. https://doi.org/10.1103/PhysRevLett.121.040502
[11]Schuld, M., Sinayskiy, I., & Petruccione, F. (2015). An introduction to quantum machine learning. Contemporary Physics, 56(2), 172-185. https://doi.org/10.1080/00107514.2014.964942
[12]Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., ... & Bengio, Y. (2014). Generative adversarial nets. Advances in Neural Information Processing Systems, 27. https://doi.org/10.48550/arXiv.1406.2661
[13]Amin, M. H., Andriyash, E., Rolfe, J., Kulchytskyy, B., & Melko, R. (2018). Quantum Boltzmann machine. Physical Review X, 8(2), 021050. https://doi.org/10.1103/PhysRevX.8.021050
[14]Endo, S., Cai, Z., Benjamin, S. C., & Yuan, X. (2021). Hybrid quantum-classical algorithms and quantum error mitigation. Journal of the Physical Society of Japan, 90(3), 032001. https://doi.org/10.7566/JPSJ.90.032001
[15]McClean, J. R., Boixo, S., Smelyanskiy, V. N., Babbush, R., & Neven, H. (2018). Barren plateaus in quantum neural network training landscapes. Nature Communications, 9(1), 4812. https://doi.org/10.1038/s41467-018-07090-4
[16]Aaronson, S. (2015). Read the fine print. Nature Physics, 11(4), 291-293. https://doi.org/10.1038/nphys3272
[17]Bergholm, V., Izaac, J., Schuld, M., Gogolin, C., Alam, M. S., Ahmed, S., ... & Killoran, N. (2018). Pennylane: Automatic differentiation of hybrid quantum-classical computations. arXiv preprint. https://doi.org/10.48550/arXiv.1811.04968
[18]Shor, P. W. (1995). Scheme for reducing decoherence in quantum computer memory. Physical Review A, 52(4), R2493. https://doi.org/10.1103/PhysRevA.52.R2493
[19]Kandala, A., Mezzacapo, A., Temme, K., Takita, M., Brink, M., Chow, J. M., & Gambetta, J. M. (2017). Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature, 549(7671), 242-246. https://doi.org/10.1038/nature23879
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Anna Patricia Tan Torres (Author)

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.